The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding.
نویسندگان
چکیده
Cyclic nucleotide phosphodiesterases (PDEs) regulate all pathways that use cGMP or cAMP as a second messenger. Five of the 11 PDE families have regulatory segments containing GAF domains, 3 of which are known to bind cGMP. In PDE2 binding of cGMP to the GAF domain causes an activation of the catalytic activity by a mechanism that apparently is shared even in the adenylyl cyclase of Anabaena, an organism separated from mouse by 2 billion years of evolution. The 2.9-A crystal structure of the mouse PDE2A regulatory segment reported in this paper reveals that the GAF A domain functions as a dimerization locus. The GAF B domain shows a deeply buried cGMP displaying a new cGMP-binding motif and is the first atomic structure of a physiological cGMP receptor with bound cGMP. Moreover, this cGMP site is located well away from the region predicted by previous mutagenesis and structural genomic approaches.
منابع مشابه
Crystal structure of the tandem GAF domains from a cyanobacterial adenylyl cyclase: modes of ligand binding and dimerization.
In several species, GAF domains, which are widely expressed small-molecule-binding domains that regulate enzyme activity, are known to bind cyclic nucleotides. However, the molecular mechanism by which cyclic nucleotide binding affects enzyme activity is not known for any GAF domain. In the cyanobacterium, Anabaena, the cyaB1 and cyaB2 genes encode adenylyl cyclases that are stimulated by bindi...
متن کاملA 46-amino acid segment in phosphodiesterase-5 GAF-B domain provides for high vardenafil potency over sildenafil and tadalafil and is involved in phosphodiesterase-5 dimerization.
Phosphodiesterase-5 (PDE5) contains a catalytic domain (C domain) that hydrolyzes cGMP and a regulatory domain (R domain) that contains two mammalian cGMP-binding phosphodiesterase, Anabaena adenylyl cyclases, Escherichia coli FhlAs (GAFs) (A and B) and a phosphorylation site for cyclic nucleotide-dependent protein kinases (cNPKs). Binding of cGMP to GAF-A increases cNPK phosphorylation of PDE5...
متن کاملMolecular determinants for cyclic nucleotide binding to the regulatory domains of phosphodiesterase 2A.
Binding of cGMP to the GAF-B domain of phosphodiesterase 2A allosterically activates catalytic activity. We report here a series of mutagenesis studies on the GAF-B domain of PDE2A that support a novel mechanism for molecular recognition of cGMP. Alanine mutations of Phe-438, Asp-439, and Thr-488, amino acids that interact with the pyrimidine ring, decrease cGMP affinity slightly but increase c...
متن کاملStructural and functional features in human PDE5A1 regulatory domain that provide for allosteric cGMP binding, dimerization, and regulation.
The cGMP-binding cGMP-specific phosphodiesterase (PDE5) contains a catalytic domain that hydrolyzes cGMP and a regulatory (R) domain that contains two GAFs (a and b; GAF is derived from the proteins mammalian cGMP-binding PDEs, Anabaena adenylyl cyclases, and Escherichia coli (FhlA)). The R domain binds cGMP allosterically, provides for dimerization, and is phosphorylated at a site regulated by...
متن کاملBinding of cyclic nucleotides to phosphodiesterase 10A and 11A GAF domains does not stimulate catalytic activity.
To date eleven human PDE (3',5'-cyclic nucleotide phosphodiesterase) families have been identified. Of these, five families contain non-catalytic tandem GAF (cGMP-specific and -stimulated phosphodiesterases, Anabaena adenylate cyclases and Escherichia coli FhlA) domains, GAFa and GAFb, in the N-terminal part of the enzyme. For PDE2A, PDE5A and PDE6 the GAF domains have been shown to bind cGMP w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 20 شماره
صفحات -
تاریخ انتشار 2002